Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1, 2005 | public
Journal Article Open

Three mechanisms for power laws on the Cayley tree

Abstract

We compare preferential growth, critical phase transitions, and highly optimized tolerance (HOT) as mechanisms for generating power laws in the familiar and analytically tractable context of lattice percolation and forest fire models on the Cayley tree. All three mechanisms have been widely discussed in the context of complexity in natural and technological systems. This parallel study enables direct comparison of the mechanisms and associated lattice solutions. Criticality fits most naturally into the category of random processes, where power laws are a consequence of fluctuations in an ensemble with no intrinsic scale. The power laws in preferential growth can be understood in the context of competing exponential growth and decay processes. HOT generalizes this functional mechanism involving exponentials of exponentials to a broader class of nonexponential functions, which arise from optimization.

Additional Information

©2005 The American Physical Society (Received 5 August 2005; published 16 November 2005) This work was supported by the David and Lucile Packard Foundation, NSF Grant No. DMR-9813752, the James S. McDonnell Foundation, and the Institute for Collaborative Biotechnologies through Grant No. DAAD19-03-D-0004 from the U.S. Army Research Office.

Files

BROpre05.pdf
Files (285.8 kB)
Name Size Download all
md5:2c1f376ec171b41cf0d2d6c982d63f28
285.8 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 13, 2023