Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 9, 2019 | public
Book Section - Chapter

Nanophotonic design for optical manipulation and propulsion of metasurfaces (Conference Presentation)

Abstract

We explore light-driven manipulation, levitation, and propulsion of ultralight weight macroscopic objects (size >> ) whose properties are tailored by nanophotonic design. Our analysis expands the regime of self-stabilizing optical manipulation from the regime of microscopic (i.e., wavelength-scale) objects such as nanoparticles to the macroscopic regime of many m, mm, cm, or even meter-scale objects, which can be achieved by tailoring the radiation pressure forces by controlling the anisotropy and spatial distribution of light scattering along the object surface. From this has emerged a general, scale-independent theory for the light-induced manipulation of macroscopic objects with patterned nanoscale components that impart optical anisotropy. From the theory, we can develop specific examples, including a scalable design that features silicon resonators on a silica substrate where these nanophotonic structures serve to self-stabilize the body dynamics.

Additional Information

© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE).

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024