Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2019 | public
Book Section - Chapter

Managing Voltage Excursions on the Distribution Network by Limiting the Aggregate Variability of Thermostatic Loads

Abstract

This paper proposes a strategy to control a group of thermostatically controlled loads (TCLs) such that the variability in their aggregate load is reduced. This strategy could be deployed in areas of a distribution network that experience voltage excursions due to net load fluctuations, such as areas with high penetrations of photovoltaic (PV) generation and/or electric vehicles (EVs), We limit variation in the power consumption of a group of TCLs using a control strategy previously developed for large aggregations of switched systems. Using this strategy, we constrain the number of TCLs that are on (i.e., actively consuming power) between upper and lower bounds. In simulations, the control strategy successfully decreases the range over which TCL power consumption varies. Percent reductions in range are greatest for medium group sizes: we find a median reduction of 82% for groups of 50 TCLs, 74% for groups of 1000 TCLs, and 59% for groups of 5 TCLs. Reducing the variability of a distribution network's power injections helps to reduce voltage variability. In a simulation of a distribution line supplying 25 households, half with PV systems, the control strategy reduces the total range of voltage by 0.02 p.u. and prevents a violation of the 0.95 p.u. limit. Lastly, we propose a new control strategy for a more realistic TCL model that includes compressor lockout. The new strategy performs comparably to the original strategy and is demonstrated through simulation.

Additional Information

© 2019 AACC. This work was supported by the National Science Foundation under Grant Nos. CNS-1446298, CNS-1837680, DGE-1256260, ECCS-1553873, as well as the Rackham Predoctoral Fellowship.

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023