Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 1999 | Published
Conference Paper Open

Numerical investigation of the flow past a cavity

Abstract

Numerical simulations are used to investigate the resonant instabilities in the flow past an open cavity. The compressible Navier-Stokes equations are solved directly (no turbulence model) for two-dimensional cavities with laminar boundary layers upstream. The computational domain is large enough to directly resolve a portion of the radiated acoustic field. The results show a transition from a shear layer mode, for shorter cavities and lower Mach numbers, to a wake mode for longer cavities and higher Mach numbers. The shear layer mode is well characterized by Rossiter modes. The wake mode is characterized instead by a large-scale vortex shedding with Strouhal number independent of the Mach number. The vortex shedding causes the boundary layer to periodically separate upstream of the cavity. The wake mode oscillation is similar to that reported by Gharib and Roshko (J. Fluid Mech., 177, 1987) for incompressible ow with a laminar upstream boundary layer. The results suggest that laminar separation upstream of the cavity edge is the cause of the transition to wake mode.

Additional Information

© 1999 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission. Published Online: 22 Aug 2012. This research was supported by AFOSR under grant F49620-98-1-0095 with technical monitor Dr. Thomas Beutner. Supercomputer time was provided by the Department of Defense High Performance Computing centers, as well as the National Science Foundation. C.W. Rowley acknowledges the support of a National Science Foundation Graduate Fellowship.

Attached Files

Published - ColoniusBasuRowley1999.pdf

Files

ColoniusBasuRowley1999.pdf
Files (1.1 MB)
Name Size Download all
md5:43340d771f2b6a8757aecd9234f2525c
1.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023