Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1998 | Published
Book Section - Chapter Open

Evaluation of Noise Radiation Mechanisms in Turbulent Jets

Abstract

Data from the direct numerical simulation (DNS) of a turbulent, compressible (Mach = 1.92) jet has been analyzed to investigate the process of sound generation. The overall goals are to understand how the different scales of turbulence contribute to the acoustic field, and to understand the role that linear instability waves play in the noise produced by supersonic turbulent jets. Lighthill's acoustic analogy was used to predict the radiate sound from turbulent source terms computed from the DNS data. Preliminary computations (for the axisymmetric mode of the acoustic field) showgood agreement between the acoustic field determined from DNS and acoustic analogy. Further work is needed to refine the calculations and investigate the source terms. Work was also begun to test the validity of linear stability wave models of sound generation in supersonic jets. An adjoint-based method was developed to project the DNS data onto the most unstable linear stability mode at different streamwise positions. This will allow the evolution of the wave and its radiated acoustic field, determined by solving the linear equations, to be compared directly with the evolution of the near and far-field fluctuations in the DNS.

Additional Information

© 1998 Stanford University Center for Turbulence Research.

Attached Files

Published - evaluation-noise-radiation-mechanisms-turbulent-jet.pdf

Files

evaluation-noise-radiation-mechanisms-turbulent-jet.pdf
Files (848.3 kB)

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023