Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 8, 2011 | public
Conference Paper

Numerical simulation of bubble dynamics in deformable vessels

Abstract

The growth and collapse of cavitation bubbles has been implicated as a potential damage mechanism leading to the rupture of blood vessels in shock wave lithotripsy (SWL) [Bailey et al., in The Fifth International Symposium on Cavitation, Osaka, Japan (2003)]. While this phenomenon has been investigated numerically, the resulting simulations have often assumed some degree of symmetry and have often failed to include a large number of influential physics, such as viscosity, compressibility, surface tension, phase change, and fluid‐structure interactions (FSI). We present here our efforts to explore the role that cavitation bubbles play in the rupture of blood vessels in SWL and to improve upon the current state of the numerical approach. We have developed a 3‐D, high‐order accurate, shock‐ and interface‐capturing, multicomponent flow algorithm that accounts for the effects of surface tension and FSI. The preliminary results for the case of a bubble collapse, induced by a shock wave lithotripter pulse and occurring inside a deformable vessel, are presented.

Additional Information

© 2011 Acoustical Society of America. Published Online: 08 April 2011. This research was supported by the NIH (Grant No. 2PO1DK043881.

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023