Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2019 | public
Journal Article

Pileup mitigation at the Large Hadron Collider with graph neural networks

Abstract

At the Large Hadron Collider, the high-transverse-momentum events studied by experimental collaborations occur in coincidence with parasitic low-transverse-momentum collisions, usually referred to as pileup. Pileup mitigation is a key ingredient of the online and offline event reconstruction as pileup affects the reconstruction accuracy of many physics observables. We present a classifier based on Graph Neural Networks, trained to retain particles coming from high-transverse-momentum collisions, while rejecting those coming from pileup collisions. This model is designed as a refinement of the PUPPI algorithm (D. Bertolini et al., JHEP 10, 059 (2014)), employed in many LHC data analyses since 2015. Thanks to an extended basis of input information and the learning capabilities of the considered network architecture, we show an improvement in pileup-rejection performances with respect to state-of-the-art solutions.

Additional Information

© 2019 Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature. First Online: 17 July 2019.

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023