Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 9, 2008 | Published
Book Section - Chapter Open

High-resolution optical modeling of the Thirty Meter Telescope for systematic performance trades

Abstract

We consider high-resolution optical modeling of the Thirty Meter Telescope for the purpose of error budget and instrumentation trades utilizing the Modeling and Analysis for Controlled Optical Systems tool. Using this ray-trace and diffraction model we have simulated the TMT optical errors related to multiple effects including segment alignment and phasing, segment surface figures, temperature, and gravity. We have then modeled the effects of each TMT optical error in terms of the Point Source Sensitivity (a multiplicative image plane metric) for a seeing limited case and an adaptive optics corrected case (for the NFIRAOS). This modeling provides the information necessary to rapidly conduct design trades with respect to the planned telescope instrumentation and to optimize the telescope error budget.

Additional Information

© 2008 Society of Photo-Optical Instrumentation Engineers (SPIE). This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the California Institute of Technology and the National Aeronautics and Space Administration. The authors gratefully acknowledge the support of the TMT partner institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology and the University of California. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA) and the U.S. National Science Foundation.

Attached Files

Published - 70170U.pdf

Files

70170U.pdf
Files (2.4 MB)
Name Size Download all
md5:2f1d246f85e33e5f953af82042c088c9
2.4 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024