Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 13, 2019 | Submitted
Report Open

Unveiling the Origin of Charge Transport in SrTiO_3 Beyond the Quasiparticle Regime

Abstract

In materials with strong electron-phonon (e-ph) interactions, the electrons carry a phonon cloud during their motion, forming quasiparticles known as polarons. Charge transport and its temperature dependence in the polaron regime remain poorly understood. Here, we present first-principles calculations of charge transport in a prototypical material with large polarons, SrTiO_3. Using a cumulant diagram-resummation technique that can capture the strong e-ph interactions, our calculations can accurately predict the experimental electron mobility in SrTiO_3 between 150−300 K. They further reveal that for increasing temperature the charge transport mechanism transitions from band-like conduction, in which the scattering of renormalized quasiparticles is dominant, to an incoherent transport regime governed by dynamical interactions between the electrons and their phonon cloud. Our work reveals long-sought microscopic details of charge transport in SrTiO_3, and provides a broadly applicable method for predicting charge transport in materials with strong e-ph interactions and polarons.

Additional Information

J.-J.Z. has benefited from discussion with N.-E. Lee. This work was supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DESC0004993. M.B. acknowledges support by the National Science Foundation under Grant No. ACI-1642443, which provided for code development, and Grant No. CAREER-1750613, which provided for theory and method development. This work was partially supported by the Air Force Office of Scientific Research through the Young Investigator Program, Grant FA9550-18-1-0280. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Attached Files

Submitted - 1905.03414.pdf

Files

1905.03414.pdf
Files (4.1 MB)
Name Size Download all
md5:0c31168ebac4cd49f8bb452cdd1991aa
4.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023