Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2019 | Submitted + Published
Journal Article Open

Venus Express radio occultation observed by PRIDE

Abstract

Context. Radio occultation is a technique used to study planetary atmospheres by means of the refraction and absorption of a spacecraft carrier signal through the atmosphere of the celestial body of interest, as detected from a ground station on Earth. This technique is usually employed by the deep space tracking and communication facilities (e.g., NASA's Deep Space Network (DSN), ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique for radio occultation experiments, using radio telescopes equipped with Very Long Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE technique for this particular application. We explain in detail the data processing pipeline of radio occultation experiments with PRIDE, based on the collection of so-called open-loop Doppler data with VLBI stations, and perform an error propagation analysis of the technique. Results. With the VEX test case and the corresponding error analysis, we have demonstrated that the PRIDE setup and processing pipeline is suited for radio occultation experiments of planetary bodies. The noise budget of the open-loop Doppler data collected with PRIDE indicated that the uncertainties in the derived density and temperature profiles remain within the range of uncertainties reported in previous Venus' studies. Open-loop Doppler data can probe deeper layers of thick atmospheres, such as that of Venus, when compared to closed-loop Doppler data. Furthermore, PRIDE through the VLBI networks around the world, provides a wide coverage and range of large antenna dishes, that can be used for this type of experiments.

Additional Information

© 2019 ESO. Article published by EDP Sciences. Received 4 April 2018; Accepted 14 February 2019; Published online 09 April 2019. We thank the referee for her/his constructive comments and corrections of our manuscript, which resulted in an overall improvement of the paper. The European VLBI Network is a joint facility of independent European, African, Asian, and North American radio astronomy institutes. Scientific results from data presented in this publication are derived from the following EVN project codes: v0427, v0429, v0430, v0501 and v0323. This study made use of data collected through the AuScope initiative. AuScope Ltd is funded under the National Collaborative Research Infrastructure Strategy (NCRIS), an Australian Commonwealth Government Programme. Venus Express (VEX) was a mission of the European Space Agency. The VEX a priori orbit, Estrack and DSN tracking stations transmission frequencies, and the events' schedules were supplied by the ESA's Venus Express project. The authors would like to thank the personnel of all the participating radio observatories. In particular, the authors are grateful to Eiji Kawai and Shingo Hasagawa for their support of observations at the Kashima radio telescope. The authors are grateful to the Venus Express Radio Science team, the VeRa PI Bernd Häusler and Venus Express Project Scientists Dmitri Titov and Håkan Svedhem for their efforts, advice and cooperation in conducting the study presented here. Tatiana Bocanegra-Bahamón acknowledges the NWO-ShAO agreement on collaboration in VLBI (No. 614.011.501). Giuseppe Cimò acknowledges the EC FP7 project ESPaCE (grant agreement 263466). Lang Cui thanks for the grants support by the program of the Light in China's Western Region (No. YBXM-2014-02), the National Natural Science Foundation of China (No. 11503072, 11573057,11703070) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS).

Attached Files

Published - aa33160-18.pdf

Submitted - 1903.01582.pdf

Files

aa33160-18.pdf
Files (4.6 MB)
Name Size Download all
md5:7eee72aff02e255962a12b86fa92d5d6
2.8 MB Preview Download
md5:073aff4d9f0a825cb404e69598d3a8c8
1.8 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023