Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2013 | public
Book Section - Chapter

Dynamic state estimation in distributed aircraft electric control systems via adaptive submodularity

Abstract

We consider the problem of estimating the discrete state of an aircraft electric system under a distributed control architecture through active sensing. The main idea is to use a set of controllable switches to reconfigure the system in order to gather more information about the unknown state. By adaptively making a sequence of reconfiguration decisions with uncertain outcome, then correlating measurements and prior information to make the next decision, we aim to reduce the uncertainty. A greedy strategy is developed that maximizes the one-step expected uncertainty reduction. By exploiting recent results on adaptive submodularity, we give theoretical guarantees on the worst-case performance of the greedy strategy. We apply the proposed method in a fault detection scenario where the discrete state captures possible faults in various circuit components. In addition, simple abstraction rules are proposed to alleviate state space explosion and to scale up the strategy. Finally, the efficiency of the proposed method is demonstrated empirically on different circuits.

Additional Information

© 2013 IEEE. The authors would like to thank Jean-Michel Maillet and Eric Wolff for very useful and enlightening discussions. This work was supported in part by IBM and UTC through the iCyPhy consortium.

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023