Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2009 | Published
Book Section - Chapter Open

Turning dynamics and passive damping in flapping flight

Abstract

We investigated whether flapping flight has an inherent stability by analyzing the inertial and aerodynamic effects of flapping wings on body dynamics. Based on wing and body kinematics of free flying fruit flies during rapid maneuvers, we found a passive counter torque due to body rotation. It is identified both in simulation through quasi-steady state aerodynamic model and through experiments on a dynamically scaled robotic wing. An analytical form is derived correspondingly. In the turning yaw axis, the estimated damping coefficient of flapping wings is significantly higher than body frictional damping; this indicates a passive deceleration during turning. By simulating insect to rotate about each principal axis of inertial and body frames, we calculated the corresponding damping coefficients, and further analyzed the attitude stability. The result reveals that, passive damping of flapping flight, while does not necessarily lead to a stable full body dynamics, provides a considerable passive restoring torque that could be critical for flight stabilization and control in the design of micro aerial vehicles. Preliminary analysis on the scaling parameters of passive damping was also performed.

Additional Information

© 2009 IEEE. Manuscript received September 15, 2008. This work was supported in part by NSF Grant #0545931.

Attached Files

Published - 05152826.pdf

Files

05152826.pdf
Files (1.1 MB)
Name Size Download all
md5:fab8e3ef191d69feb93ae3fc2b4c6500
1.1 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023