Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 15, 2019 | Accepted Version
Report Open

Enabling Technologies for Next Generation Ultraviolet Astrophysics, Planetary, and Heliophysics Missions

Abstract

Our study sought to create a new paradigm in UV instrument design, detector technology, and optics that will form the technological foundation for a new generation of ultraviolet missions. This study brought together scientists and technologists representing the broad community of astrophysicists, planetary and heliophysics physicists, and technologists working in the UV. Next generation UV missions require major advances in UV instrument design, optics and detector technology. UV offers one of the few remaining areas of the electromagnetic spectrum where this is possible, by combining improvements in detector quantum efficiency (5-10x), optical coatings and higher-performance wide-field spectrometers (5-10x), and increasing multiplex advantage (100-1000x). At the same time, budgets for future missions are tightly constrained. Attention has begun to turn to small and moderate class missions to provide new observational capabilities on timescales that maintain scientific vitality. Developments in UV technology offer a comparatively unique opportunity to conceive of small (Explorer) and moderate (Probe, Discovery, New Millennium) class missions that offer breakthrough science. Our study began with the science, reviewing the breakthrough science questions that compel the development of new observational capabilities in the next 10-20 years. We invented a framework for highlighting the objectives of UV measurement capabilities: following the history of baryons from the intergalactic medium to stars and planets. In astrophysics, next generation space UV missions will detect and map faint emission and tomographically map absorption from intergalactic medium baryons that delineate the structure of the Universe, map the circum-galactic medium that is the reservoir of galaxy-building gas, map the warm-hot ISM of our Galaxy, explore star-formation within the Local group and beyond, trace gas in proto-planetary disks and extended atmospheres of exoplanets, and record the transient UV universe. Solar system planetary atmospheric physics and chemistry, aurorae, surface composition and magnetospheric environments and interactions will be revealed using UV spectroscopy. UV spectroscopy may even detect life on an exoplanet. Our study concluded that with UV technology developments within reach over the next 5- 10 years, we can conceive moderate-class missions that will answer many of the compelling science questions driving the field. We reviewed the science measurement requirements for these pioneering new areas and corresponding technology requirements. We reviewed and evaluated the emerging technologies, and developed a figure of merit based on potential science impact, state of readiness, required investment, and potential for highly leveraged progress in a 5-10 year horizon. From this we were able to develop a strategy for technology development. Some of this technology development will be subject to funding calls from federal agencies. A subset form a portfolio of highly promising technologies that are ideal for funding from a KISS Development Program. One of our study's principal conclusions was that UV detector performance drives every aspect of the scientific capability of future missions, and that two highly flexible detector technologies were at the tipping point for major breakthroughs. These are Gen-2 borosilicate Atomic Layer Deposition (ALD) coated microchannel plate detectors with GaN photocathodes, and ALDantireflection (AR) coated, delta-doped photon-counting CCD detectors. Both offer the potential for QE>50% combined with large formats and pixel counts, low background, and sky-limited photon-counting performance over the 100-300 nm band. Ramped AR coatings for spectroscopic detectors could achieve QE's as high as 80%! A second conclusion was that UV coatings are on the threshold of a major breakthrough. UV coatings permeate every aspect of telescope and instrument design. Efficient, robust, ultra-thin and highly uniform reflective coatings applied with Atomic Layer Deposition (ALD) offer the possibility of high-performance, wide-field, highly-multiplexed UV spectrometers and a broadband reach covering the scientifically critical 100-120 nm range (home of 50% of all atomic and molecular resonance lines). Our study concluded that UV coating advances made possible by ALD is the principle technology advance that will enable a joint UV-optical general astrophysics and exoEarth imaging flagship mission. A third conclusion was that the revolution in micro- and nano-fabrication technology offers a cornucopia of new possibilities for revolutionary UV technology developments in the near future. An immediate example is the application of new microlithography techniques to patterning UV diffraction gratings that are highly efficient and designed to enable wide-field, high-resolution spectroscopy. These techniques could support the development of new detectors that could discriminate optical and UV photons and potentially energy-resolving detection. Relatively modest investments in technology development over the next 5-10 years could provide advances in detectors, coatings, diffractive elements, and filters that would result in an effective increase in science capability of 100-1000! The study brought together a diverse community, led to many new ideas and collaborations, and brought cohesion and common purpose to UV practitioners. This will have a lasting and positive impact on the future of our field.

Attached Files

Accepted Version - UV_final_report.pdf

Files

UV_final_report.pdf
Files (4.1 MB)
Name Size Download all
md5:97a309cc4714d8af5de961d9b26e3141
4.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023