Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2014 | public
Book Section - Chapter

Preliminary results on correct-by-construction control software synthesis for adaptive cruise control

Abstract

A plethora of driver convenience and safety automation systems are being introduced into production vehicles, such as electronic stability control, adaptive cruise control, lane keeping, and obstacle avoidance. Assuring the seamless and safe integration of each new automation function with existing control functions is a major challenge for vehicle manufacturers. This challenge is compounded by having different suppliers providing software modules for different control functionalities. In this paper, we report on our preliminary steps to address this problem through a fresh perspective combining formal methods, control theory, and correct-by-construction software synthesis. In particular, we begin the process of synthesizing the control software module for adaptive cruise control from formal specifications given in Linear Temporal Logic. In the longer run, we will endow each interacting software module with an assume-guarantee specification stating under which environment assumptions the module is guaranteed to meet its specifications. These assume-guarantee specifications will then be used to formally prove correctness of the cyber-physical system obtained when the integrated modules interact with the physical dynamics.

Additional Information

© 2014 IEEE. The work is supported by NSF Contract #CNS-1239037.

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023