Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 1, 2019 | public
Journal Article

Pressure-Controlled Chemical Vapor Deposition of Graphene as Catalyst for Solar Hydrogen Evolution Reaction

Abstract

In the present report, graphene-based catalysts on silicon substrate have been examined as the photocathode for solar hydrogen evolution reaction (HER). Mono-layered graphene has been synthesized through low-pressure chemical vapor deposition (LPCVD), whereas multi-layered graphene has been synthesized by atmospheric pressure chemical vapor deposition (APCVD). Copper foil is used as the substrate. The graphene layer on Cu foil subsequently transferred on to silicon photoabsorber using poly(methyl-2-methylpropenoate) (PMMA). At the initial linear sweep voltammetry (LSV) scan, LPCVD-synthesized graphene-Si (LPCVD-Si) electrode showed an onset potential of −0.65 V and photocurrent of −4.31 mA cm^(−2) (at −0.385 V). On the contrary, the onset potential and photocurrent of APCVD-prepared graphene-Si (APCVD-Si) photocathode are −0.36 V and −28.28 mA cm^(−2) (at −0.385 V), respectively. After the 130th LSV scan, the onset potential and photocurrent of LPCVD-Si improved to −0.39 V and −13.28 mA cm^(−2) (at −0.385 V), respectively. In addition, the onset potential and photocurrent of APCVD-Si photocathode at the LSV 130th scan are enhanced to −0.36 V and −28.28 mA cm^(−2) (at −0.385 V), respectively. The graphene sample grown via LPCVD-Si show stable performance whereas, the graphene obtained via APCVD-Si have higher photocurrent poor stability.

Additional Information

© 2019 Published by Elsevier B.V. Received 1 October 2018, Revised 20 December 2018, Accepted 2 January 2019, Available online 8 January 2019. We thank the financial support from the Ministry of Science and Technology (Contract Nos. MOST 106-2112-M-003-007-MY3 and MOST 107-2113-M-002-008-MY3).

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023