Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 8, 2004 | Published
Book Section - Chapter Open

First results from DesertSTAR: a 7-pixel 345-GHz heterodyne array receiver for the Heinrich Hertz Telescope

Abstract

We present the first astronomical results from DesertSTAR, a 7 pixel heterodyne array receiver designed for operation in the astrophysically rich 345 GHz atmospheric window. DesertSTAR was constructed for the 10m Heinrich Hertz Telescope located at 3150m elevation on Mt. Graham, Arizona. This receiver promises to increase mapping speed at the HHT by a factor of ~15 over the facility's existing single beam, dual polarization receiver. DesertSTAR uses tunerless, single-ended waveguide SIS mixers to achieve uncorrected receiver noise temperatures of ~60K. The instantaneous bandwidth is 2 GHz, with a 5 GHz Intermediate Frequency, offering 1600 km/s of velocity coverage. Cryogenic isolators are employed between the mixers and low noise amplifiers to assure a flat IF passband. The system uses a Joule-Thompson closed-cycle refrigerator with 180W capacity at 70K and 1.8W capacity at 4K. A novel reflective phase grating is used for Local Oscillator multiplexing, while a simple Mylar beamsplitter is used as an LO diplexer. Optics include only polyethelene mixer lenses and a single, cold, flat mirror, maximizing simplicity for high efficiency and easy optical alignment. The computer controlled bias system provides low noise bias for the SIS junctions, magnets and LNAs through a modular and hardware independent GUI interface, and allows remote operation and monitoring. We present measurements of receiver noise, beam quality, efficiency and stability in addition to astronomical observations obtained during engineering runs at the HHT.

Additional Information

© 2004 Society of Photo-Optical Instrumentation Engineers.

Attached Files

Published - 290c.pdf

Files

290c.pdf
Files (864.7 kB)
Name Size Download all
md5:abfc4c0c8ae282f1f02a2c18105e5f91
864.7 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024