Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 10, 2018 | Supplemental Material + Published
Journal Article Open

Molecular Russian dolls

Abstract

The host-guest recognition between two macrocycles to form hierarchical non-intertwined ring-in-ring assemblies remains an interesting and challenging target in noncovalent synthesis. Herein, we report the design and characterization of a box-in-box assembly on the basis of host-guest radical-pairing interactions between two rigid diradical dicationic cyclophanes. One striking feature of the box-in-box complex is its ability to host various 1,4-disubstituted benzene derivatives inside as a third component in the cavity of the smaller of the two diradical dicationic cyclophanes to produce hierarchical Russian doll like assemblies. These results highlight the utility of matching the dimensions of two different cyclophanes as an efficient approach for developing new hybrid supramolecular assemblies with radical-paired ring-in-ring complexes and smaller neutral guest molecules.

Additional Information

© 2018 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Received 03 July 2018; Accepted 30 October 2018; Published 10 December 2018. This research is part of the Joint Center of Excellence in Integrated Nano-Systems (JCIN) at King Abdulaziz City of Science and Technology (KACST) and Northwestern University (NU). Computational investigations were supported by the U.S. National Science Foundation under grant no. EFRI-1332411 (W.A.G. and T.C.). We would like to thank both KACST and NU for their continued support of this research. Electron paramagnetic resonance studies were supported by the U.S. National Science Foundation under Grant No. CHE-1565925 (M.R.W.). Data availability: All the data generated or analyzed during this study are included in this published article (and its supplementary information files) or available from the authors upon reasonable request. The crystallographic data in this study have been deposited in the Cambridge Structural Database under entry IDs CCDC 1851540–185146. Author Contributions: K.C. conceived and designed the research, carried out most of experiments, analyzed the data and composed the manuscript. M.C.L. involved in the single-crystal growths, UV–Vis–NIR and CV measurements. J.-M.H. helped with the CV measurements. C.L.S. did the crystallographic analysis. M.R.W. and J.N. performed the EPR studies. W.A.G. and T.C. performed DFT calculations. M.C.L. and Z.L. did the first revision of the manuscript. Y.F. and S.V. provided some help with the synthesis. Y.S., D.S., and C.C. involved in the discussions and contributed to the manuscript preparation. J.F.S. directed the research. All authors discussed and commented on the manuscript. The authors declare no competing interests.

Attached Files

Published - s41467-018-07673-1.pdf

Supplemental Material - 41467_2018_7673_MOESM1_ESM.docx

Supplemental Material - 41467_2018_7673_MOESM2_ESM.pdf

Files

s41467-018-07673-1.pdf
Files (10.8 MB)
Name Size Download all
md5:b588d6b8c06e45e5d5cda5eba7a00316
1.7 MB Preview Download
md5:32d1d808941da07f0cca03b89be71fcb
240.2 kB Preview Download
md5:02693859656bad1259030d69147d47df
8.9 MB Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023