Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2018 | public
Book Section - Chapter

Role of Doping Dependent Radiative and Non-radiative Recombination in Determining the Limiting Efficiencies of Silicon Solar Cells

Abstract

We show that increasing the bulk doping in a silicon based solar cell can increase the fraction of photo generated carriers that recombine radiatively at open circuit condition. This increases the maximum achievable open circuit voltage (Voc) in a solar cell At higher doping levels auger recombination and band gap narrowing effects dominate leading to a reduction in Voc. Therefore radiative and non-radiative recombinations at Voc determines the optimum doping of the bulk to maximize the performance especially in thin solar cells with increased surface area due to surface texturing.

Additional Information

© 2018 IEEE. This material is based upon work supported in part by the National Science Foundation (NSF) and the Department of Energy (DOE) under NSF CA No. EEC-1041895. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of NSF or DOE. The authors would like to thank Phil Jahelka and Colton Bukowsky for productive discussions.

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023