Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 1988 | Published
Journal Article Open

Kinetics and product studies of the BrO + ClO Reaction: Implications for Antarctic chemistry

Abstract

The reaction of ClO with BrO has been investigated by two independent techniques, discharge flow‐mass spectrometry and flash photolysis‐UV spectrometry, over the temperature range 220‐400 K and the pressure range 1‐760 torr. Rate constants have been determined for three product channels; a) Br + ClOO, b) Br + OClO, and c) BrCl + O_2. The rate constants for the overall reaction and each reaction branch were found to be inversely dependent on temperature and independent of pressure. The results for the temperature dependence of the overall rate constant from the discharge flow and flash photolysis studies are in excellent agreement, and collectively disagree substantially with the only previous temperature dependence study. Also, in contrast to previous studies, the channel forming BrCl is found to be significant (≃ 8%). These kinetic measurements have an important impact on the modeling of Antarctic chemistry; for temperatures found in the Antarctic stratosphere the rate coefficients for the channels yielding ClOO and OClO are a factor of 2‐3 larger than previously estimated. In addition, the BrCl channel, which has an impact on the nighttime partitioning of BrO_X and the diurnal variability of OClO, has been omitted from previous atmospheric models.

Additional Information

© 1988 American Geophysical Union. (Received: May 12, 1988; Revised: June 28, 1988; Accepted: June 30, 1988) Paper number 8L6857. The authors wish to thank Drs. D. W. Toohey and R. J. Salawitch for many helpful discussions. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This article also appears in: Polar Ozone

Attached Files

Published - Sander_et_al-1988-Geophysical_Research_Letters.pdf

Files

Sander_et_al-1988-Geophysical_Research_Letters.pdf
Files (378.9 kB)

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023