Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2, 2018 | Cover Image + Published
Journal Article Open

Electronic Preresonance Stimulated Raman Scattering Microscopy

Abstract

Optical microscopy has generated great impact for modern research. While fluorescence microscopy provides the ultimate sensitivity, it generally lacks chemical information. Complementarily, vibrational imaging methods provide rich chemical-bond-specific contrasts. Nonetheless, they usually suffer from unsatisfying sensitivity or compromised biocompatibility. Recently, electronic preresonance stimulated Raman scattering (EPR-SRS) microscopy was reported, achieving simultaneous high detection sensitivity and superb vibrational specificity of chromophores. With newly synthesized Raman-active dyes, this method readily breaks the optical color barrier of fluorescence microscopy and is well-suited for supermultiplex imaging in biological samples. In this Perspective, we first review previous utilizations of electronic resonance in various Raman spectroscopy and microscopy. We then discuss the physical origin and uniqueness of the electronic preresonance region, followed by quantitative analysis of the enhancement factors involved in EPR-SRS microscopy. On this basis, we provide an outlook for future development as well as the broad applications in biophotonics.

Additional Information

© 2018 American Chemical Society. ACS Editors' Choice - This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Received: January 21, 2018. Accepted: July 12, 2018. Published: July 12, 2018. We are grateful for discussions with Lixue Shi, Zhixing Chen, Louis Brus, and Sunney Xie. W.M. acknowledges support from NIH Director's New Innovator Award (1DP2EB016573) and R01 (EB020892) and the Camille and Henry Dreyfus Foundation. The authors declare no competing financial interest.

Attached Files

Published - acs.jpclett.8b00204

Cover Image - jpclcd_v009i015.jpg

Files

jpclcd_v009i015.jpg
Files (6.3 MB)
Name Size Download all
md5:11a632433eb7dfd3c22f0b76b2b908c4
2.7 MB Download
md5:cddcfe83ec99228e650c425a2d24e4ac
3.6 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023