Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 29, 2018 | Supplemental Material
Journal Article Open

Electrolyte-Assisted Hydrogen Storage Reactions

Abstract

Use of electrolytes, in the form of LiBH_4/KBH_4 and LiI/KI/CsI eutectics, is shown to significantly improve (by more than a factor of 10) both the dehydrogenation and full rehydrogenation of the MgH_2/Sn destabilized hydride system and the hydrogenation of MgB_2 to Mg(BH_4)_2. The improvement revealed that interparticle transport of atoms heavier than hydrogen can be an important rate-limiting step during hydrogen cycling in hydrogen storage materials consisting of multiple phases in powder form. Electrolytes enable solubilizing heavy ions into a liquid environment and thereby facilitate the reaction over full surface areas of interacting particles. The examples presented suggest that use of electrolytes in the form of eutectics, ionic liquids, or solvents containing dissolved salts may be generally applicable for increasing reaction rates in complex and destabilized hydride materials.

Additional Information

© 2018 American Chemical Society. Received: August 27, 2018; Revised: November 5, 2018; Published: November 5, 2018. This work was supported by the U.S. Department of Energy under contract DE-EE0007849. The NMR facility at the California Institute of Technology was supported by the National Science Foundation (NSF) under Grant Number 9724240 and partially supported by the MRSEC Program of the NSF under Award Number DMR-520565. Sandia authors gratefully acknowledge research support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office through the Hydrogen Storage Materials Advanced Research Consortium (HyMARC). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. The authors declare no competing financial interest.

Attached Files

Supplemental Material - jp8b08335_si_001.pdf

Files

jp8b08335_si_001.pdf
Files (889.7 kB)
Name Size Download all
md5:70b023d646d8d5269092e1010081cf5c
889.7 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023