Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2018 | Supplemental Material + Published
Journal Article Open

Temperature dependence of phonons in FeGe_2

Abstract

Inelastic neutron scattering was used to measure phonon dispersions in a single crystal of FeGe_2 with the C16 structure at 300, 500, and 635 K. Phonon densities of states (DOS) were also measured on polycrystalline FeGe_2 from 325 to 1050 K, and the Fe partial DOS was obtained from polycrystalline ^(57)FeGe_2 at 300 K using nuclear resonant inelastic x-ray scattering. The dominant feature in the temperature dependence of the phonon spectrum is thermal broadening of high-energy modes. The energy shifts of the low- and high-energy parts of the spectrum were almost the same. DFT calculations performed with the quasiharmonic approximation gave results in moderate agreement with the experimental thermal energy shifts, although the isobaric Grüneisen parameter calculated from the quasiharmonic model was smaller than that from measurements. The thermal broadening of the phonon spectrum and dispersions, especially at high energies, indicates a cubic anharmonicity to second order that should also induce phonon shifts. We show that different anharmonic contributions cancel out, giving average phonon shifts in moderate agreement to calculations with the quasiharmonic approximation. The different parts of the large phonon contribution to the entropy are separated for FeGe_2, showing modest but interpretable anharmonic contributions.

Additional Information

© 2018 American Physical Society. Received 25 November 2017; revised manuscript received 5 August 2018; published 9 October 2018. This work was supported by DOE BES under Contract No. DE-FG02-03ER46055. A portion of this research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This work benefited from danse software developed under NSF Grant No. DMR-0520547. Part of the calculations performed herein were made possible by resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Attached Files

Published - PhysRevMaterials.2.103602.pdf

Supplemental Material - FeGe2_Supplemental_Revision_Aug2018.pdf

Files

FeGe2_Supplemental_Revision_Aug2018.pdf
Files (4.8 MB)
Name Size Download all
md5:8fdf6a90172223ed6739afac7783a81e
1.8 MB Preview Download
md5:e148905ac278044c34e5bf9bd1cdbb0b
3.0 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023