Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2018 | public
Journal Article

Enantioselectivity in Biotransformation and Bioaccumulation Processes of Typical Chiral Contaminants

Abstract

Chirality is a critical topic in the medicinal and agrochemical fields. One quarter of all agrochemicals was chiral in 1996, and this proportion has increased remarkably with the introduction of new compounds over time. Despite scientists have made great efforts to probe the enantiomeric selectivity of chiral chemicals in the environment since early 1990s, the different behaviours of individual enantiomers in biologically mediated processes are still unclear. In the present review, we highlight state-of-the-knowledge on the stereoselective biotransformation and accumulation of chiral contaminants in organisms ranging from invertebrates to humans. Chiral insecticides, fungicides, and herbicides, polychlorinated biphenyls (PCBs), pharmaceuticals, flame retardants hexabromocyclododecane (HBCD), and perfluorooctane sulfonate (PFOS) are all included in the target compounds. Key findings included: a) Changes in the enantiomeric fractions in vitro and in vivo models revealed that enantioselectivity commonly occurs in biotransformation and bioaccumulation. b) Emerging contaminants have become more important in the field of enantioselectivity together with their metabolites in biological transformation process. c) Chiral signatures have also been regarded as powerful tools for tracking pollution sources when the contribution of precursor is unknown. Future studies are needed in order to understand not only preliminary enrichment results but also detailed molecular mechanisms in diverse models to comprehensively understand the behaviours of chiral compounds.

Additional Information

© 2018 Published by Elsevier Ltd. Received 8 April 2018, Revised 3 September 2018, Accepted 19 September 2018, Available online 20 September 2018. This paper has been recommended for acceptance by Dr. Chen Da.

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023