Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2018 | Published
Journal Article Open

Metal Transformation by a Novel Pelosinus Isolate From a Subsurface Environment

Abstract

The capability of microorganisms to alter metal speciation offers potential for the development of new strategies for immobilization of toxic metals in the environment. A metal-reducing microbe, "Pelosinus lilae" strain UFO1, was isolated under strictly anaerobic conditions from an Fe(III)-reducing enrichment established with uncontaminated soil from the Department of Energy Oak Ridge Field Research Center, Tennessee. "P. lilae" UFO1 is a rod-shaped, spore-forming, and Gram-variable anaerobe with a fermentative metabolism. It is capable of reducing the humic acid analog anthraquinone-2,6-disulfonate (AQDS) using a variety of fermentable substrates and H_2. Reduction of Fe(III)-nitrilotriacetic acid occurred in the presence of lactate as carbon and electron donor. Ferrihydrite was not reduced in the absence of AQDS. Nearly complete reduction of 1, 3, and 5 ppm Cr(VI) occurred within 24 h in suspensions containing 10^8 cells mL^(−1) when provided with 10 mM lactate; when 1 mM AQDS was added, 3 and 5 ppm Cr(VI) were reduced to 0.1 ppm within 2 h. Strain UFO1 is a novel species within the bacterial genus Pelosinus, having 98.16% 16S rRNA gene sequence similarity with the most closely related described species, Pelosinus fermentans R7^T. The G+C content of the genomic DNA was 38 mol%, and DNA-DNA hybridization of "P. lilae" UFO1 against P. fermentans R7^T indicated an average 16.8% DNA-DNA similarity. The unique phylogenetic, physiologic, and metal-transforming characteristics of "P. lilae" UFO1 reveal it is a novel isolate of the described genus Pelosinus.

Additional Information

© 2018 Ray, Connon, Neal, Fujita, Cummings, Ingram and Magnuson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Received: 29 December 2017; Accepted: 06 July 2018; Published: 17 August 2018. We thank E. O'Leary-Jepson and M. Andrews of the ISU MRCF for DNA sequencing; P. Pinhero and T. Trowbridge for help with electron microscopy; J. Taylor for ion chromatography; M. Thomas for assistance with phylogenetic analysis; A. Eddingsaas, L. Wendt, T. Gresham, D. Reed, and J. Barnes for technical assistance. We would also like to thank D. Watson for providing core samples from ORFRC. XPS was performed at the Image and Chemical Analysis Laboratory, Department of Physics, Montana State University, Bozeman, MT, United States. Author Contributions: AR, SC, AN, JI, and DC conducted the experiments. AR, SC, YF, DC, and TM designed the experiments. All authors contributed to the preparation of the manuscript. This work was supported by funding from the Inland Northwest Research Alliance (INRA) and Idaho National Laboratory (INL) under DOE Idaho Operations Office Contract DE-AC07-05ID14517. AR was supported by INRA and INL Subsurface Science Graduate Fellowship, TM and DC were supported by INRA Subsurface Science Initiative Grant Number ISU-004. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Attached Files

Published - fmicb-09-01689.pdf

Files

fmicb-09-01689.pdf
Files (1.2 MB)
Name Size Download all
md5:83d62d9bc75e419d8470cd850c59356b
1.2 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023