Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 21, 2018 | Submitted + Published
Journal Article Open

Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues

Abstract

We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 deg^2 with a median redshift of 0.59. The catalogues cover two main fields: Stripe 82, and an area overlapping the South Pole Telescope survey region. We describe our data analysis process and in particular our shape measurement using two independent shear measurement pipelines, METACALIBRATION and IM3SHAPE. The METACALIBRATION catalogue uses a Gaussian model with an innovative internal calibration scheme, and was applied to riz bands, yielding 34.8M objects. The IM3SHAPE catalogue uses a maximum-likelihood bulge/disc model calibrated using simulations, and was applied to r-band data, yielding 21.9M objects. Both catalogues pass a suite of null tests that demonstrate their fitness for use in weak lensing science. We estimate the 1σ uncertainties in multiplicative shear calibration to be 0.013 and 0.025 for the METACALIBRATION and IM3SHAPE catalogues, respectively.

Additional Information

© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model). Accepted 2018 August 7. Received 2018 July 17; in original form 2017 August 3; Published: 18 August 2018. We thank Rachel Mandelbaum and the GREAT3 team for providing the COSMOS galaxy images used for the im3shape calibration. We are also grateful to the eyeballing volunteers, among them Mandeep Gill, Annalisa Mana, Ben Mawdsley, Tom McClintock, Alessandro Nastasi, and Corvin Stern, for their help with validating the COSMOS galaxy images. Support for DG was provided by NASA through the Einstein Fellowship Program, grant PF5-160138 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. ES was supported by DOE grant DE-AC02-98CH10886. MJ, BJ, and GB are partially supported by the US Department of Energy grant DE-SC0007901 and funds from the University of Pennsylvania. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom,the Higher Education Funding Council for England,the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University,Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l'Espai (IEEC/CSIC), the Institut de Física d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. The DES-DM system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-88861, FPA2015-68048, SEV-2012-0234, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This work received funding from the European Union's Horizon 2020 research and innovation programme grant agreement 681431. The metacalibration calculations were performed using computational resources at SLAC National Accelerator Laboratory. We thank the SLAC computational team for their consistent support. Besides computing resources at SLAC, this research used computing resources at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. It also used resources at the Ohio Supercomputing Center.

Attached Files

Published - sty2219.pdf

Submitted - 1708.01533.pdf

Files

sty2219.pdf
Files (11.3 MB)
Name Size Download all
md5:45691d0d9d85234aea8c58676de6c53d
7.2 MB Preview Download
md5:db200cb65f50c37db611cd471f08a740
4.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023