Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 8, 2018 | public
Book Section - Chapter

Precision Timing Detectors with Cadmium Telluride Sensors

Abstract

Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. A large fraction of the energy in an electromagnetic shower is carried by photons. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type Cadmium-Telluride sensor with an active area of 1 cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

Additional Information

© 2018 Springer Nature Singapore Pte Ltd. First Online: 08 August 2018.

Additional details

Created:
August 21, 2023
Modified:
January 14, 2024