Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 16, 2008 | Published
Book Section - Chapter Open

Thermal performance prediction of the TMT optics

Abstract

Thermal analysis for the Thirty Meter Telescope (TMT) optics (the primary mirror segment, the secondary mirror, and the tertiary mirror) was performed using finite element analysis in ANSYS and I-DEAS. In the thermal analysis, each of the optical assemblies (mirror, mirror supports, cell) was modeled for various thermal conditions including air convections, conductions, heat flux loadings, and radiations. The thermal time constant of each mirror was estimated and the temperature distributions of the mirror assemblies were calculated under the various thermal loading conditions. The thermo-elastic analysis was made to obtain the thermal deformation based on the resulting temperature distributions. The optical performance of the TMT optics was evaluated from the thermally induced mirror deformations. The goal of this thermal analysis is to establish thermal models by the FEA programs to simulate for an adequate thermal environment. These thermal models can be utilized for estimating the thermal responses of the TMT optics. In order to demonstrate the thermal responses, various sample time-dependent thermal loadings were modeled to synthesize the operational environment. Thermal responses of the optics were discussed and the optical consequences were evaluated.

Additional Information

© 2008 Society of Photo-Optical Instrumentation Engineers (SPIE). This research was carried out at the National Optical Astronomy Observatory, and was sponsored in part by the TMT. The authors gratefully acknowledge the support of the TMT partner institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology and the University of California. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA) and the U.S. National Science Foundation. The authors would like to acknowledge Laurie Phillips of the GSMT Program Office of NOAO and Ben Platt, Curtis Baffes, Eric Williams, and Larry Stepp of the TMT Project for their review and helpful comments.

Attached Files

Published - 701716.pdf

Files

701716.pdf
Files (949.1 kB)
Name Size Download all
md5:349dd59133f8dc378511182e3d3b4195
949.1 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024