Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 6, 2018 | public
Journal Article

A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field

Abstract

The Juno spacecraft, which is in a polar orbit around Jupiter, is providing direct measurements of the planet's magnetic field close to its surface. A recent analysis of observations of Jupiter's magnetic field from eight (of the first nine) Juno orbits has provided a spherical-harmonic reference model (JRM09) of Jupiter's magnetic field outside the planet. This model is of particular interest for understanding processes in Jupiter's magnetosphere, but to study the field within the planet and thus the dynamo mechanism that is responsible for generating Jupiter's main magnetic field, alternative models are preferred. Here we report maps of the magnetic field at a range of depths within Jupiter. We find that Jupiter's magnetic field is different from all other known planetary magnetic fields. Within Jupiter, most of the flux emerges from the dynamo region in a narrow band in the northern hemisphere, some of which returns through an intense, isolated flux patch near the equator. Elsewhere, the field is much weaker. The non-dipolar part of the field is confined almost entirely to the northern hemisphere, so there the field is strongly non-dipolar and in the southern hemisphere it is predominantly dipolar. We suggest that Jupiter's dynamo, unlike Earth's, does not operate in a thick, homogeneous shell, and we propose that this unexpected field morphology arises from radial variations, possibly including layering, in density or electrical conductivity, or both.

Additional Information

© 2018 Springer Nature Limited. Received: 9 April 2018; Accepted: 26 July 2018; Published online 5 September 2018. All authors acknowledge support from the Juno project. K.M.M. is supported by the US Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) programme and L.K. through a US National Science Foundation Graduate Fellowship. Reviewer information: Nature thanks C. Jones and the other anonymous reviewer(s) for their contribution to the peer review of this work. Author Contributions: K.M.M. and J.B. wrote the manuscript and performed the data analysis. K.M.M., J.B., J.E.P.C., S.K., J.L.J. and J.M.G.M. contributed to discussions of the data analysis, and K.M.M., R.K.Y., L.K., H.C., J.B. and D.J.S. contributed to discussions of the dynamo implications. All authors contributed to editing and revising the manuscript. J.E.P.C. is principal investigator of the Juno magnetometer investigation, S.J.B. is principal investigator of the mission and S.M.L. is project scientist of the mission. The authors declare no competing interests. Data availability: The Juno magnetometer data used in this study will be made available through the NASA Planetary Data System (https://pds.nasa.gov) in accordance with NASA policy. An animated version of Fig. 2 is available at https://doi.org/10.6084/m9.figshare.6828953.

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023