Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 15, 1994 | Published
Journal Article Open

Scalar gravitation: A laboratory for numerical relativity. II. Disks

Abstract

While not a correct physical theory, relativistic scalar gravitation provides a simple test site for developing many of the tools of numerical relativity. Using this theory, we have built a mean-field particle simulation scheme to study the dynamical behavior of collisionless disks. Disks are one-dimensional matter sources of two-dimensional gravitational fields. One-dimensional disk sources can be evolved without excessive computational resources and yet they are able to generate nonspherical gravitational waves. We find that we are able to calculate smooth and accurate wave forms from time-varying disks, despite the stochastic representation of the matter source terms caused by sampling with a finite number of particles. A similar scheme should provide accurate wave forms in general relativity, provided sufficient computer resources are used.

Additional Information

© 1994 American Physical Society. (Received 27 August 1993) We thank M. Scheel for several useful discussions. This research was supported in part by NSF Grants AST 91-19475 and PHY 90-07834 and NASA Grant NAGW-2364 at Cornell University.

Attached Files

Published - PhysRevD.49.1886.pdf

Files

PhysRevD.49.1886.pdf
Files (568.2 kB)
Name Size Download all
md5:9e7b2b0f9dc7dc866148f3761a29cd00
568.2 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 18, 2023