Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 15, 1992 | Published
Journal Article Open

Collisions of relativistic clusters and the formation of black holes

Abstract

We perform numerical simulations of head-on collisions of relativistic clusters. The cluster particles interact only gravitationally, and so satisfy the collisionless Boltzmann equation in general relativity. We construct and follow the evolution of three classes of initial configurations: spheres of particles at rest; spheres of particles boosted towards each other; and spheres of particles in circular orbits about their respective centers. In the first two cases, the spheres implode towards their centers and may form black holes before colliding. These scenarios thus can be used to study the head-on collision of two black holes. In the third case the clusters are initially in equilibrium and cannot implode. In this case collision from rest leads either to coalescence and virialization, or collapse to a black hole. This scenario is the collisionless analog of colliding neutron stars in relativistic hydrodynamics.

Additional Information

© 1992 American Physical Society. (Received 30 October 1991) This research was supported in part by NSF Grants Nos. AST 90-15451 and PHY 90-07834 and NASA Grant No. NAGW-2364 at Cornell University. Computations were performed on the Cornell National Supercomputer Facility.

Attached Files

Published - PhysRevD.45.2739.pdf

Files

PhysRevD.45.2739.pdf
Files (476.7 kB)
Name Size Download all
md5:936b4e9c297c4f053b05e5e3fcdc4c79
476.7 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 18, 2023