Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 27, 2018 | Supplemental Material
Journal Article Open

Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH

Abstract

Hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) are both 2 orders slower in alkaline electrolyte than in acidic electrolyte, but no explanation has been provided. The first step toward understanding this dramatic pH-dependent HOR/HER performance is to explain the pH-dependent hydrogen binding to the electrode, a perplexing behavior observed experimentally. In this work, we carried out Quantum Mechanics Molecular Dynamics (QMMD) with explicit considerations of solvent and applied voltage (U) to in situ simulate water/Pt(100) interface in the condition of under-potential adsorption of hydrogen (H_(UPD)). We found that as U is made more negative, the electrode tends to repel water, which in turn increases the hydrogen binding. We predicted a 0.13 eV increase in hydrogen binding from pH = 0.2 to pH = 12.8 with a slope of 10 meV/pH, which is close to the experimental observation of 8 to 12 meV/pH. Thus, we conclude that the changes in water adsorption are the major causes of pH-dependent hydrogen binding on a noble metal. The new insight of critical role of surface water in modifying electrochemical reactions provides a guideline in designing HER/HOR catalyst targeting for the alkaline electrolyte.

Additional Information

© 2018 American Chemical Society. Received: April 22, 2018; Published: May 24, 2018. This work was initiated with support from National Science Foundation (CBET 1512759, program manager Robert McCabe) and completed with support from the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. The authors declare no competing financial interests.

Attached Files

Supplemental Material - ja8b04006_si_001.pdf

Files

ja8b04006_si_001.pdf
Files (1.4 MB)
Name Size Download all
md5:c80e1a8c2ca21c03ff9acffdcd054f79
1.4 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023