Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 20, 2018 | Published + Accepted Version
Journal Article Open

Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs

Abstract

We study the dust attenuation curves of 230,000 individual galaxies in the local universe, ranging from quiescent to intensely star-forming systems, using GALEX, SDSS, and WISE photometry calibrated on the Herschel ATLAS. We use a new method of constraining SED fits with infrared luminosity (SED+LIR fitting), and parameterized attenuation curves determined with the CIGALE SED-fitting code. Attenuation curve slopes and UV bump strengths are reasonably well constrained independently from one another. We find that A_λ/A_V attenuation curves exhibit a very wide range of slopes that are on average as steep as the curve slope of the Small Magellanic Cloud (SMC). The slope is a strong function of optical opacity. Opaque galaxies have shallower curves—in agreement with recent radiative transfer models. The dependence of slopes on the opacity produces an apparent dependence on stellar mass: more massive galaxies have shallower slopes. Attenuation curves exhibit a wide range of UV bump amplitudes, from none to Milky Way (MW)-like, with an average strength one-third that of the MW bump. Notably, local analogs of high-redshift galaxies have an average curve that is somewhat steeper than the SMC curve, with a modest UV bump that can be, to first order, ignored, as its effect on the near-UV magnitude is 0.1 mag. Neither the slopes nor the strengths of the UV bump depend on gas-phase metallicity. Functional forms for attenuation laws are presented for normal star-forming galaxies, high-z analogs, and quiescent galaxies. We release the catalog of associated star formation rates and stellar masses (GALEX–SDSS–WISE Legacy Catalog 2).

Additional Information

© 2018 The American Astronomical Society. Received 2018 February 8; revised 2018 April 13; accepted 2018 April 16; published 2018 May 17. The construction of GSWLC was funded through NASA ADAP award NNX12AE06G. We thank Daniella Calzetti and Veronique Buat for valuable discussions. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. Based on observations made with the NASA Galaxy Evolution Explorer (GALEX). GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.

Attached Files

Published - Salim_2018_ApJ_859_11.pdf

Accepted Version - 1804.05850.pdf

Files

1804.05850.pdf
Files (5.1 MB)
Name Size Download all
md5:48b09002881dc87bd4567ace5507c848
1.7 MB Preview Download
md5:b89326ddf8b7bec6da1f3585888cd959
3.4 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023