Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2018 | public
Journal Article

First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent Hubbard U

Abstract

It has been proposed that iron has a significant effect on the relative stability of carbonate phases at high pressures, possibly even stabilizing double-cation carbonates (e.g., dolomite) with respect to single-cation carbonates (e.g., magnesite, aragonite and siderite). X-ray diffraction experiments have shown that dolomite transforms at ~35 GPa to a high-pressure polymorph that is stable to decomposition; however, there has been disagreement on the structure of the high-pressure phase (Mao et al. in Geophys Res Lett 38, 2011. doi: 10.1029/2011GL049519; Merlini et al. in Proc Natl Acad Sci 109:13509–13514, 2012. doi: 10.1073/pnas.1201336109). Ab initio calculations interfaced with an evolutionary structure prediction algorithm demonstrated that a C2/c polymorph of pure CaMg(CO_3)_2 dolomite is more stable than previously reported structures (Solomatova and Asimow in Am Mineral 102:210–215, 2017, doi: 10.2138/am-2017-5830). In this study, we calculate the relative enthalpies up to 80 GPa for a set of carbonate phases including Fe-bearing solutions and endmembers, using the generalized gradient approximation and a Hubbard U parameter calculated through linear response theory to accurately characterize the electronic structure of Fe. When calculated with a constant U of 4 eV, the spin transition pressure of (Mg,Fe)CO_3 agrees well with experiments, whereas an internally consistent U overestimates the spin transition pressure by ~50 GPa. However, whether we use constant or internally consistent U values, a higher iron concentration increases the stability field of dolomite C2/c with respect to single-cation carbonate assemblages, but iron-free dolomite is not stable with respect to single-cation carbonates at any pressure. Thus, high-pressure polymorphs of Fe-bearing dolomite could in fact represent an important reservoir for carbon storage within oxidized sections of Earth's mantle.

Additional Information

© 2017 Springer-Verlag GmbH Germany. Received: 16 May 2017; Accepted: 17 August 2017; Published online: 28 August 2017. We thank K. Jarolimek, H. Hsu and H.J. Kulik for discussions. We are thankful to N. Near-Ansari for assistance with compiling relevant software and managing libraries on FRAM, the high-performance computing cluster at Caltech. This work is supported by the U.S. National Science Foundation through award EAR-1551433.

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023