Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2018 | public
Journal Article

Scintillation Yield Estimates of Colloidal Cerium-Doped LaF_3 Nanoparticles and Potential for "Deep PDT"

Abstract

A hybrid of radiotherapy and photodynamic therapy (PDT) has been proposed in previously reported studies. This approach utilizes scintillating nanoparticles to transfer energy to attached photosensitizers, thus generating singlet oxygen for local killing of malignant cells. Its effectiveness strongly depends upon the scintillation yield of the nanoparticles. Using a liquid scintillator as a reference standard, we estimated the scintillation yield of Ce_(0.1)La_(0.9)F_3/LaF_3 core/shell nanoparticles at 28.9 mg/ml in water to be 350 photons/MeV under orthovoltage X-ray irradiation. The subsequent singlet oxygen production for a 60 Gy cumulative dose to cells was estimated to be four orders of magnitude lower than the "Niedre killing dose," used as a target value for effective cell killing. Without significant improvements in the radioluminescence properties of the nanoparticles, this approach to "deep PDT" is likely to be ineffective. Additional considerations and alternatives to singlet oxygen are discussed.

Additional Information

© 2018 by Radiation Research Society. Received: September 18, 2017; Accepted: March 23, 2018; Published: April 19, 2018.

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023