Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2018 | Accepted Version
Journal Article Open

Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks

Abstract

Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSP's planar four-color graph coloring, maximum independent set, and sudoku on this substrate and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of nonsaturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by nonlinear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation and offer insight into the computational role of dual inhibitory mechanisms in neural circuits.

Additional Information

© 2018 Massachusetts Institute of Technology. Posted Online March 22, 2018.

Attached Files

Accepted Version - nihms961112.pdf

Files

nihms961112.pdf
Files (1.0 MB)
Name Size Download all
md5:d4a3923ac241b819e1c747a8f8b104f8
1.0 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023