Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2018 | public
Journal Article

Experimental investigation of the effect of non-Newtonian behavior of blood flow in the Fontan circulation

Abstract

The Fontan procedure for univentricular heart defects creates a unique circulation where all pulmonary blood flow is passively supplied directly from systemic veins. Computational simulations, aimed at optimizing the surgery, have assumed blood to be a Newtonian fluid without evaluating the potential error introduced by this assumption. We compared flow behavior between a non-Newtonian blood analog (0.04% xanthan gum) and a control Newtonian fluid (45% glycerol) in a simplified model of the Fontan circulation. Particle image velocimetry was used to examine flow behavior at two different cardiac outputs and two caval blood flow distributions. Pressure and flow rates were measured at each inlet and outlet. Velocity, shear strain, and shear stress maps were derived from velocity data. Power loss was calculated from pressure, flow, and velocity data. Power loss was increased in all test conditions with xanthan gum vs. glycerol (mean 10 ± 2.9% vs. 5.6 ± 1.3%, p=0.032). Pulmonary blood flow distribution differed in all conditions, more so at low cardiac output. Caval blood flow mixing patterns and shear stress were also qualitatively different between the solutions in all conditions. We conclude that assuming blood to be a Newtonian fluid introduces considerable error into simulations of the Fontan circulation, where low-shear flow predominates.

Additional Information

© 2017 Elsevier Masson SAS. Received 20 July 2017, Revised 27 September 2017, Accepted 20 December 2017, Available online 27 December 2017.

Additional details

Created:
August 21, 2023
Modified:
October 18, 2023