Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2007 | public
Journal Article

Reduced parietal and visual cortical activation during global processing in Williams syndrome

Abstract

Several lines of investigation suggest that individuals with Williams syndrome (WS), a neurodevelopmental disorder of well-characterized genetic etiology, have selective impairments in integrating local image elements into global configurations. We compared global processing abilities in 10 clinically and genetically diagnosed participants with WS (eight females, two males; mean age 31y 10mo [SD 9y 7mo], range 15y 5mo-48y 4mo) with a typically developed (TD) age- and sex-matched comparison group (seven females, one male; mean age 35y 2mo [SD 10y 10mo], range 24y-54y 7mo) using functional magnetic resonance imaging (fMRI). Behavioral data showed participants with WS to be significantly less accurate (p<0.042) together with a non-significant trend to be slower than the TD comparison group while performing the global processing task. fMRI data showed participants with WS to possess reduced activation in the visual and parietal cortices. Participants with WS also showed relatively normal activation in the ventral occipitotemporal cortex, but elevated activation in several posterior thalamic nuclei. These preliminary results largely confirm previous research findings and neural models implicating neurodevelopmental abnormalities in extended subcortical and cortical visual systems in WS, most notably dorsal-stream pathways.

Additional Information

© 2007 Wiley. Issue online: 21 May 2007. Version of Record online: 21 May 2007. Accepted for publication 7th December 2006. This study was supported by the following grants from the National Institutes of Health: MH01142, MH50047, HD31715, HD33113, and HD40761. We thank J Eric Schmitt and Katie McKenzie for their help with data acquisition and analysis.

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023