Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2018 | Published
Journal Article Open

Characterization of Postinfusion Phenotypic Differences in Fresh Versus Cryopreserved TCR Engineered Adoptive Cell Therapy Products

Abstract

Adoptive cell therapy (ACT) consisting of genetically engineered T cells expressing tumor antigen-specific T-cell receptors displays robust initial antitumor activity, followed by loss of T-cell activity/persistence and frequent disease relapse. We characterized baseline and longitudinal T-cell phenotype variations resulting from different manufacturing and administration protocols in patients who received ACT. Patients with melanoma who enrolled in the F5-MART-1 clinical trial (NCT00910650) received infusions of MART-1 T-cell receptors transgenic T cells with MART-1 peptide-pulsed dendritic cell vaccination. Patients were divided into cohorts based on several manufacturing changes in the generation and administration of the transgenic T cells: decreasing ex vivo stimulation/expansion time, increased cell dose, and receiving fresh instead of cryopreserved cells. T-cell phenotypes were analyzed by flow cytometry at baseline and longitudinally in peripheral blood. Transgenic T cells with shorter ex vivo culture/expansion periods displayed significantly increased expression of markers associated with less differentiated naive/memory populations, as well as significantly decreased expression of the inhibitory receptor programmed death 1 (PD1). Patients receiving fresh infusions of transgenic cells demonstrated expansion of central memory T cells and delayed acquisition of PD1 expression compared with patients who received cryopreserved products. Freshly infused transgenic T cells showed persistence and expansion of naive and memory T-cell populations and delayed acquisition of PD1 expression, which correlated with this cohort's superior persistence of transgenic cells and response to dendritic cell vaccines. These results may be useful in designing future ACT protocols.

Additional Information

© 2018 The Author(s). Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/ Received for publication November 7, 2017; accepted January 11, 2018. The authors gratefully acknowledge the NHLBI National Gene Vector Biorepository at Indiana University (PI Cornetta, P40HL116212) for assistance in the generation and maintenance of the F5 Vector. Flow cytometry was performed in the UCLA Jonsson Comprehensive Cancer Center (JCCC) and Center for AIDS Research Flow Cytometry Core Facility that is supported by National Institutes of Health awards P30 CA016042 and 5P30 AI028697, and by the JCCC, the UCLA AIDS Institute, and the David Geffen School of Medicine at UCLA. Conflicts of Interest/Financial Disclosures: Supported in part by NIH grants R01 CA129816 (to J.S.E.), P01 CA132681 (to D.B.), R35 CA197633 and P01 CA168585 (to A.R.), as well as the Parker Institute for Cancer Immunotherapy, the Ressler Family Fund, the Grimaldi Family Fund, the Samuels Family Fund and the Garcia-Corsini Family Fund (to A.R.). T.S.N. is supported by the NIH/NICHD grant K12-HD000850 (Pediatric Scientist Development Program). All authors have declared that there are no financial conflicts of interest with regard to this work.

Attached Files

Published - Characterization_of_Postinfusion_Phenotypic.5.pdf

Files

Characterization_of_Postinfusion_Phenotypic.5.pdf
Files (670.1 kB)
Name Size Download all
md5:01ced5fa06eefd0d8dd7960c806b42f4
670.1 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023