Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 8, 2018 | Supplemental Material
Journal Article Open

Monolayer atomic crystal molecular superlattices

Abstract

Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 10^7, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

Additional Information

© 2018 Macmillan Publishers Limited. received 20 January 2017; accepted 17 January 2018. The authors acknowledge the Electron Imaging Center for NanoMachines (EICN) at California NanoSystem Institute (CNSI) and Nanoelectronic Research Facility (NRF) at UCLA for technical support. Xiangfeng D. acknowledges support by National Science Foundation DMR1508144 (materials synthesis) and Office of Naval Research through grant number N00014-15-1-2368 (device fabrications). Y.H. acknowledges support by National Science Foundation EFRI-1433541. Y.L. was supported by a Resnick Prize Postdoctoral Fellowship at Caltech. L.L. acknowledges support through the 973 grant of MOST (No. 2013CBA01604). X.H.C. acknowledges support from the National Natural Science Foundation of China (Grant No. 11534010). W.A.G. and Y.L. were also supported by DOE DE-SC0014607. W.A.G acknowledges the Extreme Science and Engineering Discovery Environment (XSEDE) supported by National Science Foundation grant ACI-1053575. Y.L. acknowledges the computational resources sponsored by the DOE's Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory, and the Texas Advanced Computing Center (TACC). I.S. thanks the Deanship of Scientific Research at King Saud University for its funding of this research through grant PEJP-17-01. Author Contributions: Xiangfeng D., Y.H. and C.W. co-designed the research. C.W. conducted device fabrication, electrical properties measurements and data analysis. C.W., Q.H. and U.H. conducted the intercalation experiments. C.W., U.H., Z.L. and Z.F. conducted structural and optical characterizations. Y.L., H.X. and W.A.G. contributed to the superlattice atomic and electronic structure calculations. E.Z. conducted the TEM studies. Q.H., Xidong D., Y.-C.H., H.W., H.-C.C., I.S. and L.L. contributed to the initial measurement system set-up, preparation of 2D materials and data analysis. R.C. contributed to the initial BP property characterization. N.O.W. contributed to the schematic drawing. G.J.Y. and X.H.C. prepared the initial BP material. Y.H. and Xiangfeng D. supervised the research. Xiangfeng D. and C.W. co-wrote the manuscript. All authors discussed the results and commented on the manuscript. Data availability: The data that support the findings of this study are available from the corresponding author on reasonable request. The authors declare no competing financial interests. Nature thanks N. Guisinger, K. Loh and Q. Xiong for their contribution to the peer review of this work.

Attached Files

Supplemental Material - nature25774-sf1.jpg

Supplemental Material - nature25774-sf2.jpg

Supplemental Material - nature25774-sf3.jpg

Supplemental Material - nature25774-sf4.jpg

Supplemental Material - nature25774-sf5.jpg

Supplemental Material - nature25774-sf6.jpg

Supplemental Material - nature25774-sf7.jpg

Supplemental Material - nature25774-st1.jpg

Files

nature25774-sf4.jpg
Files (609.4 kB)
Name Size Download all
md5:dbca6200b352b7eb4961318051745ecb
133.5 kB Preview Download
md5:8aef12b3da78c880ec9a943a3250c987
51.5 kB Preview Download
md5:77ed3ae4836a013b5b4df789f362175b
44.1 kB Preview Download
md5:0ac5bfc47d61c0e664bd60da8fdc90d8
83.4 kB Preview Download
md5:833351cb00045efaab3ffbd66523ffe5
110.9 kB Preview Download
md5:ab5000b5fe5c8af7301b15244ec884a3
63.2 kB Preview Download
md5:81465bfa10541770649e2a81f4f0f005
67.8 kB Preview Download
md5:be13e1e27aac4b6c261a9bb1802e03ff
55.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023