Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2018 | Submitted + Published
Journal Article Open

On thermalization in the SYK and supersymmetric SYK models

Abstract

The eigenstate thermalization hypothesis is a compelling conjecture which strives to explain the apparent thermal behavior of generic observables in closed quantum systems. Although we are far from a complete analytic understanding, quantum chaos is often seen as a strong indication that the ansatz holds true. In this paper, we address the thermalization of energy eigenstates in the Sachdev-Ye-Kitaev model, a maximally chaotic model of strongly-interacting Majorana fermions. We numerically investigate eigenstate thermalization for specific few-body operators in the original SYK model as well as its N = 1 supersymmetric extension and find evidence that these models satisfy ETH. We discuss the implications of ETH for a gravitational dual and the quantum information-theoretic properties of SYK it suggests.

Additional Information

© 2018 The Author(s). This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. Article funded by SCOAP3. Received: November 19, 2017; Accepted: February 7, 2018; Published: February 22, 2018. We thank Fernando Brandão, Tarun Grover, Jenia Mozgunov, Burak Şahinoğlu, David Simmons-Duffin, and Beni Yoshida, as well as the attendees of the Institute for Quantum Information (IQI) group meetings at Caltech, for valuable discussion and comments. We especially thank Yuan Xin for help on down-sampling the plots. NHJ acknowledges support from the Simons Foundation through the "It from Qubit" collaboration as well as from the Institute for Quantum Information and Matter (IQIM), an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with support from the Gordon and Betty Moore Foundation (GBMF-2644). JL is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0011632. YZ is supported by the graduate student program at the Perimeter Institute.

Attached Files

Published - 10.1007_2FJHEP02_2018_142.pdf

Submitted - 1710.03012.pdf

Files

1710.03012.pdf
Files (4.9 MB)
Name Size Download all
md5:9c0c935571635a7d02c8fd62543cbf74
2.3 MB Preview Download
md5:10eef813a57350c64506db383b93ad89
2.6 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 17, 2023