Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 25, 1997 | public
Journal Article

Electron tunneling in structurally engineered proteins

Abstract

Photosynthesis, respiration, nitrogen fixation, drug metabolism, DNA synthesis, and immune response are among the scores of biological processes that rely heavily on long-range (10 to 25 Å) protein electron-transfer (ET) reactions. Semiclassical theory predicts that the rates of these reactions depend on the reaction driving force −ΔG°, a nuclear reorganization parameter λ, and the electronic-coupling strength H_(AB) between reactants and products at the transition state: ET rates (k°_(ET)) reach their maximum values when the nuclear factor is optimized (−ΔG° = λ); these k_(ET)° values are limited only by the strength (H_(AB)^2) of the electronic interaction between the donor (D) and acceptor (A). Coupling-limited Cu^+ to Ru^(3+) and Fe^(2+) to Ru^(3+) ET rates have been extracted from kinetic studies on several Ru-modified proteins. In azurin, a blue copper protein, the distant D/A pairs are relatively well coupled (k°_(ET) decreases exponentially with R(CuRu); the decay constant is 1.1 Å^(−1)). In contrast to the extended peptides found in azurin and other β-sheet proteins, helical structures have tortuous covalent pathways owing to the curvature of the peptide backbone. The decay constants estimated from ET rates for D/A pairs separated by long sections of the α helix in myoglobin and the photosynthetic reaction center are between 1.25 and 1.6 Å^(−1).

Additional Information

© 1997 Elsevier Science. Received 1 August 1996. Our work on electron transfer in proteins is supported by the National Science foundation, the National Institutes of Health, and the Arnold and Mabel Beckman Foundation.

Additional details

Created:
September 15, 2023
Modified:
October 23, 2023