Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 8, 2005 | public
Journal Article

Effect of Solvent and pH on the Structure of PAMAM Dendrimers

Abstract

We report various structural and conformational properties of generations 4, 5, and 6 PAMAM (polyamidoamine) dendrimer [EDA (ethylenediamine) core)] at various protonation levels through extensive molecular dynamics (MD) simulations in explicit solvent. The presence of solvent leads to swelling of the dendrimer (by 33% for G5 compared to the case of no solvent). We find that decreasing the solution from high pH (∼10, no protonation) to neutral (∼7, only primary amines protonated) to low pH (∼4, tertiary amines also protonated) changes the radius of gyration of G5 from 21 to 22 to 25 Å, respectively. We also report such other structural quantities as radial density, distribution of terminal groups, solvent accessible surface area and volume, shape, and structure factors (to compare with SAXS and SANS experiments) at various pH conditions. We find significant back-folding of the outer subgenerations in the interior of the molecules at all levels of pH, contrary to original expectations and some SANS experiments but in agreement with other SANS experiments. We find significant water penetration inside the dendrimer, with ∼3 water/tertiary amine for high pH and ∼6 water/tertiary amine for low pH (all for G5). This indicates that the interior of the dendrimer is quite open with internal cavities available for accommodating guest molecules, suggesting using PAMAM dendrimer for guest−host applications. This estimate of internal waters suggests that sufficient water is available to facilitate metal ion binding.

Additional Information

© 2005 American Chemical Society. Received 28 April 2004. Published online 13 January 2005. Published in print 1 February 2005. We thank Dr. Mamadou Diallo for useful discussions. We thank an anonymous referee for bringing out the issue of calculating effective Debye length. This material is partly based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U.S. Army Research Office under Grant DAAG55-97-1-0126 (Doug Kiserow) and completed with funding from NSF (NIRT CTS-0132002). The facilities of the MSC are also supported by grants from ARO (DURIP), ONR (DURIP), NSF, NIH, ChevronTexaco, General Motors, Seiko Epson, Asahi Kasei, and Beckman Institute.

Additional details

Created:
August 19, 2023
Modified:
October 26, 2023