Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2017 | Published
Journal Article Open

Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies

Abstract

The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. A major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.

Additional Information

© 2017 the Authors. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Received 12 September 2016; accepted 9 February 2017; published online 28 March 2017. We are grateful to Alex King, John Newsam, John Perkins, Abhijit V. Shevade, John Smythe, and Ji-Cheng Zhao for manuscript input, and Andrey Dobrynin, Tom Kalil, Om Nalamasu, Nag Patibandla, Shannon Sullivan, and the National Science Foundation (DMR Grant No. 1439054) for their critical role in making the workshop16 possible. J.M.G. acknowledges support from the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy Award No. DE-SC0004993. A.Z. was supported by U.S. DOE, as a part of a Laboratory Directed Research and Development (LDRD) program, under Contract No. DE-AC36-08GO28308 to NREL. Certain commercial equipment, instruments, or materials are identified in this paper to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Attached Files

Published - 1_2E4977487.pdf

Files

1_2E4977487.pdf
Files (3.6 MB)
Name Size Download all
md5:4b5439fef7354d8a419865ae94f294b3
3.6 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023