Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 30, 2017 | Published
Journal Article Open

Converging on the Initial Mass Function of Stars

Abstract

Understanding the origin of stellar masses—the initial mass function (IMF)— remains one of the most challenging problems in astrophysics. The IMF is a key ingredient for simulations of galaxy formation and evolution, and is used to calibrate star formation relations in extra-galactic observations. Modeling the IMF directly in hydrodynamical simulations has been attempted in several previous studies, but the most important processes that control the IMF remain poorly understood. This is because predicting the IMF from direct hydrodynamical simulations involves complex physics such as turbulence, magnetic fields, radiation feedback and mechanical feedback, all of which are difficult to model and the methods used have limitations in terms of accuracy and computational efficiency. Moreover, a physical interpretation of the simulated IMFs requires a numerically converged solution at high resolution, which has so far not been convincingly demonstrated. Here we present a resolution study of star cluster formation aimed at producing a converged IMF. We compare a set of magnetohydrodynamical (MHD) adaptive-mesh-refinement simulations with three different implementations of the thermodynamics of the gas: 1) with an isothermal equation of state (EOS), 2) with a polytropic EOS, and 3) with a simple stellar heating feedback model. We show that in the simulations with an isothermal or polytropic EOS, the number of stars and their mass distributions depend on the numerical resolution. By contrast, the simulations that employ the simple radiative feedback module demonstrate convergence in the number of stars formed and in their IMFs.

Additional Information

© 2017 Published under licence by IOP Publishing Ltd. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. We thank the anonymous referee for their useful comments on the manuscript. C.F. gratefully acknowledges funding provided by the Australian Research Council's Discovery Projects (grants DP150104329 and DP170100603). The simulations presented in this work used high performance computing resources provided by the Leibniz Rechenzentrum and the Gauss Centre for Supercomputing (grants pr32lo, pr48pi and GCS Large-scale project 10391), the Partnership for Advanced Computing in Europe (PRACE grant pr89mu), the Australian National Computational Infrastructure (grant ek9), and the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia, in the framework of the National Computational Merit Allocation Scheme and the ANU Allocation Scheme. The simulation software FLASH was in part developed by the DOE-supported Flash Center for Computational Science at the University of Chicago.

Attached Files

Published - Federrath_2017_J._Phys._3A_Conf._Ser._837_012007.pdf

Files

Federrath_2017_J._Phys._3A_Conf._Ser._837_012007.pdf
Files (3.2 MB)

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023