Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2017 | Published
Journal Article Open

Neutrino-heated winds from millisecond protomagnetars as sources of the weak r-process

Abstract

We explore heavy element nucleosynthesis in neutrino-driven winds from rapidly rotating, stronglymagnetized protoneutron stars ('millisecond protomagnetars') forwhich themagnetic dipole is aligned with the rotation axis, and the field is assumed to be a static force-free configuration. We process the protomagnetar wind trajectories calculated by Vlasov, Metzger & Thompson through the r-process nuclear reaction network SkyNet using contemporary models for the evolution of the wind electron fraction during the protoneutron star cooling phase. Although we do not find a successful second or third-peak r-process for any rotation period P, we show that protomagnetars with P ∼ 1–5 ms produce heavy element abundance distributions that extend to higher nuclear mass number than from otherwise equivalent spherical winds (with the mass fractions of some elements enhanced by factors of �100–1000). The heaviest elements are synthesized by outflows emerging along flux tubes that graze the closed zone and pass near the equatorial plane outside the light cylinder. Due to dependence of the nucleosynthesis pattern on the magnetic field strength and rotation rate of the protoneutron star, natural variations in these quantities between core collapse events could contribute to the observed diversity of the abundances of weak r-process nuclei in metal-poor stars. Further diversity, including possibly even a successful third-peak r-process, could be achieved for misaligned rotators with non-zero magnetic inclination with respect to the rotation axis. If protomagnetars are central engines for GRBs, their relativistic jets should contain a high-mass fraction of heavy nuclei of characteristic mass number ¯A ≈ 100, providing a possible source for ultrahigh energy cosmic rays comprised of heavy nuclei with an energy spectrum that extends beyond the nominal Grezin–Zatsepin–Kuzmin cut-off for protons or iron nuclei.

Additional Information

© 2017 The Authors. Accepted 2017 February 20. Received 2017 February 20; in original form 2017 January 11. ADV and BDM gratefully acknowledge support from the National Science Foundation (AST-1410950, AST-1615084), NASA, through the Astrophysics Theory Program (NNX16AB30G) and the Fermi Guest Investigator Program (NNX15AU77G, NNX16AR73G), the Research Corporation for Science Advancement Scialog Program (RCSA 23810), and the Alfred P. Sloan Foundation.

Attached Files

Published - stx478.pdf

Files

stx478.pdf
Files (1.0 MB)
Name Size Download all
md5:7bf4a0478cb51684f9be39b41fe7f7ed
1.0 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023