Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 28, 2001 | public
Journal Article

Entropy of Pure-Silica Molecular Sieves

Abstract

The entropies of a series of pure-silica molecular sieves (structural codes ^*BEA, FAU, MFI, and MTT) are obtained by calorimetric measurements of low-temperature heat capacity. The third-law entropies at 298.15 K are (on the basis of 1 mol of SiO_2):  ^*BEA, 44.91 ± 0.11 J·K^(-1)·mol^(-1); FAU, 44.73 ± 0.11 J·K^(-1)·mol^(-1); MFI, 45.05 ± 0.11 J·K^(-1)·mol^(-1); MTT, 45.69 ± 0.11 J·K^(-1)·mol^(-1); while the corresponding entropies of transition from quartz at 298.15 K are ^*BEA, 3.4 J·K^(-1)·mol^(-1); FAU, 3.2 J·K^(-1)·mol^(-1); MFI, 3.6 J·K^(-1)·mol^(-1); MTT, 4.2 J·K^(-1)·mol^(-1). The entropies span a very narrow range at 3.2−4.2 J·K^(-1)·mol^(-1) above quartz, despite a factor of 2 difference in molar volume. This confirms that there are no significant entropy barriers to transformations between SiO_2 polymorphs. Finally, the Gibbs free energy of transformation with respect to quartz is calculated for eight SiO_2 phases and all are found to be within twice the available thermal energy of each other at 298.15 K.

Additional Information

© 2001 American Chemical Society. Received 7 February 2001. Published online 31 May 2001. Published in print 1 June 2001. Financial support for this work was provided by the Chevron Research and Technology Co. P.M.P. thanks Dr. Stacey Zones (Chevron) for providing the ZSM-23 (MTT) sample. J.B.G. and B.F.W. thank Rebecca Stevens and B. Hom for assistance with the heat capacity measurements and B. Lang for calculations. A.N. thanks the National Science Foundation (Grant DMR/97-31782) for support.

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023