Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2017 | public
Journal Article

Global land mapping of satellite-observed CO_2 total columns using spatio-temporal geostatistics

Abstract

This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_2 total column (XCO_2) using spatio-temporal geostatistics, which makes full use of the joint spatial and temporal dependencies between observations. The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO2, and obtains global land maps of XCO_2, with a spatial grid resolution of 1° latitude by 1° longitude and temporal resolution of 3 days. We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways: (1) in cross-validation, the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations, (2) in comparison with ground truth provided by the Total Carbon Column Observing Network (TCCON), the predicted XCO_2 time series and those from TCCON sites are in good agreement, with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and (3) in comparison with model simulations, the spatio-temporal variability of XCO_2 between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent. The generated mapping XCO_2 data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.

Additional Information

© 2017 Taylor & Francis. Received 19 Oct 2015, Accepted 17 Feb 2016, Published online: 14 Apr 2016.

Additional details

Created:
August 22, 2023
Modified:
October 25, 2023