Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 13, 2001 | Supplemental Material
Journal Article Open

Chelators for Radioimmunotherapy: I. NMR and Ab Initio Calculation Studies on 1,4,7,10-Tetra(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO4Pr) and 1,4,7-Tris(carboxymethyl)-10-(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO3A1Pr)

Abstract

This work describes the modification of the chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N' ',N' ''-tetraacetic acid (DOTA) to improve the rate of metal loading for radioimmunotherapy applications. Previous ab initio calculations predicted that the compounds 1,4,7,10-tetra(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO4Pr) and 1,4,7-tris(carboxymethyl)-10-(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO3A1Pr) have a ca. 2000-fold improvement in yttrium metal loading rates compared to those of DOTA (Jang, Y. H.; Blanco, M.; Dasgupta, S.; Keire, D. A.; Shively, J. E.; Goddard, W. A., III. J. Am. Chem. Soc. 1999, 121, 6142−6151). In this study, we report the synthesis, purification, 1H-NMR chemical shift assignments, pKa values, metal loading rate measurements, and additional ab initio calculations of these two compounds. The yttrium loading rates of DO3A1Pr are approximately twice those of DOTA, at pH 4.6 and 37 °C. The NMR data indicates that the DO4Pr analogue forms a stable type I complex but does not form a type II complex. The new ab initio calculations performed on DO4Pr and DO3A1Pr indicate that the rate-determining step is the deprotonation of the first macrocycle amine proton, not the second proton as assumed in the previous calculations. The new calculations predict an improvement in the rate of metal loading that more closely matches the experimentally observed change in the rate.

Additional Information

© 2001 American Chemical Society. Received 13 September 2000. Published online 19 July 2001. Published in print 1 August 2001.

Attached Files

Supplemental Material - ic0010297_s.pdf

Files

ic0010297_s.pdf
Files (173.7 kB)
Name Size Download all
md5:3653cca59616375244bab68fb316303f
173.7 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023