Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 12, 2003 | Supplemental Material
Journal Article Open

Structural Model for an Alkaline Form of Ferricytochrome c

Abstract

An ^(15)N-enriched sample of the yeast iso-1-ferricytochrome c triple variant (Lys72Ala/Lys79Ala/Cys102Thr) in an alkaline conformation was examined by NMR spectroscopy. The mutations were planned to produce a cytochrome c with a single conformer. Despite suboptimal conditions for the collection of spectra (i.e., pH ≈ 11), NMR remains a suitable investigation technique capable of taking advantage of paramagnetism. 76% of amino acids and 49% of protons were assigned successfully. The assignment was in part achieved through standard methods, in part through the identification of groups maintaining the same conformation as in the native protein at pH 7 and, for a few other residues, through a tentative analysis of internuclear distance predictions. Lys73 was assigned as the axial ligand together with His18. In this manner, 838 meaningful NOEs for 108 amino acids, 50 backbone angle constraints, and 203 pseudocontact shifts permitted the convergence of randomly generated structures to a family of conformers with a backbone RMSD of 1.5 ± 0.2 Å. Most of the native cytochrome c conformation is maintained at high pH. The NOE pattern that involves His18 clearly indicates that the proximal side of the protein, including the 20s and 40s loops, remains essentially intact. Structural differences are concentrated in the 70−80 loop, because of the replacement of Met80 by Lys73 as an axial ligand, and in the 50s helix facing that loop; as a consequence, there is increased exposure of the heme group to solvent. Based on several spectral features, we conclude that the folded polypeptide is highly fluxional.

Additional Information

© 2003 American Chemical Society. Received 5 June 2002. Published online 14 February 2003. Published in print 1 March 2003. We thank the MIUR COFIN2001 and EU TMR Network (FMRX-CT98-0218) (I.B.), Italian CNR (Progetto Finalizzato Biotecnologie 01.00359.PF49) (P.T.), Operating Grant MT-14021 from the Canadian Institutes of Health Research and a Canada Research Chair (A.G.M.), and the National Science Foundation (H.B.G.).

Attached Files

Supplemental Material - ja027180ssi20021029_013138__2_.pdf

Files

ja027180ssi20021029_013138__2_.pdf
Files (100.0 kB)
Name Size Download all
md5:d836120d4eb199d973534a11bf16428a
100.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023