Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2017 | public
Journal Article

Physical Dynamics of Ice Crystal Growth

Abstract

We examine ice crystallization from liquid water and from water vapor, focusing on the underlying physical processes that determine growth rates and structure formation. Ice crystal growth is largely controlled by a combination of molecular attachment kinetics on faceted surfaces and large-scale diffusion processes, yielding a remarkably rich phenomenology of solidification behaviors under different conditions. Layer nucleation plays an especially important role, with nucleation rates determined primarily by step energies on faceted ice/water and ice/vapor interfaces. The measured step energies depend strongly on temperature and other factors, and it appears promising that molecular dynamics simulations could soon be used in conjunction with experiments to better understand the energetics of these terrace steps. On larger scales, computational techniques have recently demonstrated the ability to accurately model the diffusion-limited growth of complex structures that are both faceted and branched. Together with proper boundary conditions determined by surface attachment kinetics, this opens a path to fully reproducing the variety of complex structures that commonly arise during ice crystal growth.

Additional Information

© 2017 Annual Reviews. First published as a Review in Advance on March 15, 2017. Disclosure Statement: The author is not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023